
Package: flowr (via r-universe)
September 13, 2024

Type Package

Title Streamlining Design and Deployment of Complex Workflows

Description This framework allows you to design and implement complex
pipelines, and deploy them on your institution's computing
cluster. This has been built keeping in mind the needs of
bioinformatics workflows. However, it is easily extendable to
any field where a series of steps (shell commands) are to be
executed in a (work)flow.

Version 0.9.11

Depends R (>= 3.3), methods, params (>= 0.7), utils

Imports diagram, whisker, tools, readr

Suggests reshape2, knitr, testthat, funr, rmarkdown

Enhances ggplot2, openxlsx, pacman, cowplot

VignetteBuilder knitr

URL https://github.com/flow-r/flowr

BugReports https://github.com/flow-r/flowr/issues

License MIT + file LICENSE

RoxygenNote 7.1.1

Language en-US

Repository https://flow-r.r-universe.dev

RemoteUrl https://github.com/flow-r/flowr

RemoteRef HEAD

RemoteSha dabf9d0df4d580e45b758b4dd7f2346e76a63c3d

Contents
check . 2
check_args . 3
fetch . 4

1

https://github.com/flow-r/flowr
https://github.com/flow-r/flowr/issues

2 check

flow-class . 6
flowopts . 7
get_resources . 9
get_wds . 10
job . 10
kill . 12
plot_flow . 13
queue-class . 14
rerun . 16
run . 18
run_pipe_v2 . 20
setup . 21
status . 22
submit_flow . 23
submit_job . 24
submit_run . 25
test_queue . 25
to_df.status . 26
to_flow . 26
to_flowdef . 29
to_flowdet . 32
to_flowmat . 33
verbose . 35
whisker_render . 36
write_flow_details . 37

Index 38

check Check consistency of flowdef and flowmat

Description

Check consistency of flowdef and flowmat, using various rules.

Usage

check(x, ...)

S3 method for class 'flowmat'
check(x, ...)

S3 method for class 'flowdef'
check(x, verbose = opts_flow$get("verbose"), ...)

check_args 3

Arguments

x a flowdef or flowmat object

... Passed onto either check.flowdef OR check.flowmat functions

verbose A numeric value indicating the amount of messages to produce. Values are
integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

Details

A typical output from flowdef with verbose level: 2

checking if required columns are present...
checking if resources columns are present...
checking if dependency column has valid names...
checking if submission column has valid names...
checking for missing rows in def...
checking for extra rows in def...
checking submission and dependency types...
jobname prev.sub_type --> dep_type --> sub_type: relationship
1: aln1_a none --> none --> scatter
2: aln2_a scatter --> none --> scatter
3: sampe_a scatter --> serial --> scatter rel: complex one:one
4: fixrg_a scatter --> serial --> scatter rel: complex one:one
5: merge_a scatter --> gather --> serial rel: many:one
6: markdup_a serial --> serial --> serial rel: simple one:one
7: target_a serial --> serial --> serial rel: simple one:one
8: realign_a serial --> burst --> scatter rel: one:many
9: baserecalib_a scatter --> serial --> scatter rel: complex one:one
10: printreads_a scatter --> serial --> scatter rel: complex one:one

check_args Assert none of the arguments of a function are null.

Description

Checks all the arguments in the parent function and makes sure that none of them are NULL

Usage

check_args(ignore, select)

Arguments

ignore optionally ignore a few variables for checking.

select optionally only check a few variables of the function.

4 fetch

Details

This function has now been moved to params package.

fetch Two generic functions to search for pipelines and configuration files.

Description

These functions help in searching for specific files in the user’s space.

fetch_pipes(): Fetches pipelines in the following places, in this specific order:

• user’s folder: ~/flowr/pipelines

• current wd: ./

NOTE: If same pipeline is available in multiple places; intuitively, one from the later folder would
be selected. As such, giving priority to user’s home, and current working directories.

 fetch_conf(): Fetches configuration files in ALL of the following places:

• package: conf folders in flowr and ngsflows packages.

• user’s folder: ~/flowr/conf folder.

• current wd: ./

NOTE: This function would greedily return all matching conf files. One would load all of them in
the order returned by this function. If the same variable is repeated in multiple files, value from later
files would replace those formerly defined. Thus (as explained above), giving priority to options
defined in user’s home and current working directories.

By default flowr loads, flowr.conf and ngsflows.conf. See the details sections, for more expla-
nation on this.

Usage

fetch(x, places, urls, verbose = opts_flow$get("verbose"))

fetch_pipes(
x,
places,
last_only = FALSE,
urls = opts_flow$get("flowr_pipe_urls"),
silent = FALSE,
verbose = opts_flow$get("verbose"),
ask = TRUE

)

fetch_conf(x = "flowr.conf", places, ...)

fetch 5

Arguments

x name of the file to search for (without extension). By default fetch_pipes and
fetch_conf search for files ending with .R and .conf respectively.

places places (paths) to look for files matching the name. Defaults are already defined
in the function.

urls urls to look for, works well for pipelines [not implemented yet]

verbose A numeric value indicating the amount of messages to produce. Values are
integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

last_only fetch_pipes():. If multiple pipelines match the pattern, return the last one. [TRUE]

silent fetch_pipes(): logical, be silent even if no such pipeline is available. [FALSE]

ask ask before downloading or copying. [not implemented]

... [not implemented]

Details

For example flowr has a variable flow_run_path where it puts all the execution logs etc. The
default value is picked up from the internal flowr.conf file. To redefine this value, one could create
a new file called ~/flowr/conf/flowr.conf and add a line:

flow_run_path TAB my_awesome_path, where TAB is a tab character, since these are tab separated
files.

Also, at any time you can run, opts_flow$load; to load custom options.

See Also

flowopts

Examples

let us find a default conf file
conf = fetch_conf("flowr.conf");conf
load this
opts_flow$load(conf)

this returns a list, which prints pretty
pip = fetch_pipes("sleep_pipe")
pip$name
pip$pipe
pip$def

6 flow-class

flow-class Describing the flow class

Description

Internal function (used by to_flow), which aids in creating a flow object.

Usage

flow(
jobs = list(new("job")),
name = "newflow",
desc = "my_super_flow",
mode = c("scheduler", "local"),
flow_run_path = opts_flow$get("flow_run_path"),
trigger_path = "",
flow_path = "",
version = "0.0",
status = "created",
module_cmds = opts_flow$get("module_cmds"),
execute = ""

)

Arguments

jobs list: A list of jobs to be included in this flow

name character: Name of the flow. [’newflow’]

desc character Description of the flow, used to uniquely identify a flow instance.
[’my_super_flow’]

mode character Mode of submission of the flow (depreciated). [’scheduler’]

flow_run_path The base path of all the flows you would submit. [~/flows]

trigger_path character [~/flows/trigger].

flow_path character: A unique path identifying a flow instance, populated by submit_flow.

version version of flowr used to create and execute this flow.

status character: Status of the flow.

module_cmds [advanced use] a character vector of cmds which will be pre-pended to all script
of this pipeline. Could be cmds like `module load mytool1;module load mytool2`

execute execution status of flow object. [FALSE]

flowopts 7

Examples

cmds = rep("sleep 5", 10)
qobj <- queue(platform='torque')
run the 10 commands in parallel
jobj1 <- job(q_obj=qobj, cmd = cmds, submission_type = "scatter", name = "job1")

run the 10 commands sequentially, but WAIT for the previous job to complete
Many-To-One
jobj2 <- job(q_obj=qobj, cmd = cmds, submission_type = "serial",
dependency_type = "gather", previous_job = "job1", name = "job2")

As soon as first job on 'job1' is complete
One-To-One
jobj3 <- job(q_obj=qobj, cmd = cmds, submission_type = "scatter",
dependency_type = "serial", previous_job = "job1", name = "job3")

fobj <- flow(jobs = list(jobj1, jobj2, jobj3))

plot the flow
plot_flow(fobj)
Not run:
dry run, only create the structure without submitting jobs
submit_flow(fobj)

execute the jobs: ONLY works on computing cluster, would fail otherwise
submit_flow(fobj, execute = TRUE)

End(Not run)

flowopts Default options/params used in flowr and ngsflows

Description

There are three helper functions which attempt to manage parameters used by flowr and ngsflows:

• get_opts OR opts_flow\$get(): show all default options

• set_opts OR opts_flow\$set(): set default options

• load_opts OR opts_flow\$load(): load options specified in a tab separated text file

For more details regarding these functions refer to params package.

Usage

flowopts

get_opts(...)
set_opts(...)
load_opts(...)

http://sahilseth.com/params/

8 flowopts

Arguments

... • get: names of options to fetch
• set: a set of options in a name=value format separated by commas

Format

opts_flow

An object of class list of length 5.

Details

By default flowr loads, ~/flowr/conf/flowr.conf and ~/flowr/conf/ngsflows.conf

Below is a list of default flowr options, retrieved via

opts_flow$get():

name	value
default_regex	(.*)
flow_base_path	~/flowr
flow_conf_path	~/flowr/conf
flow_parse_lsf	.*(\<[0-9]*\>).*
flow_parse_moab	(.*)
flow_parse_sge	(.*)
flow_parse_slurm	(.*)
flow_parse_torque	(.?)\..*
flow_pipe_paths	~/flowr/pipelines
flow_pipe_urls	~/flowr/pipelines
flow_platform	local
flow_run_path	~/flowr/runs
my_conf_path	~/flowr/conf
my_dir	path/to/a/folder
my_path	~/flowr
my_tool_exe	/usr/bin/ls
time_format	%a %b %e %H:%M:%S CDT %Y
verbose	FALSE

See Also

fetch params read_sheet

Examples

Set options: opts_flow$set()
opts = opts_flow$set(flow_run_path = "~/mypath")
OR if you would like to supply a long list of options:
opts = opts_flow$set(.dots = list(flow_run_path = "~/mypath"))

load options from a configuration file: opts_flow$load()

get_resources 9

conffile = fetch_conf("flowr.conf")
opts_flow$load(conffile)

Fetch options: get_opts()
opts_flow$get("flow_run_path")
opts_flow$get()

get_resources Extract resources used by each job of a flow get_resources currently
this only works on LSF

Description

Extract resources used by each job of a flow get_resources currently this only works on LSF

Usage

get_resources(x, odir, ...)

Arguments

x A character vector of length 1. This may be a parent level folder with directories
with multiple flow runs.

odir Output directory to save the results

... other arguments sent to get_resources_lsf

Details

If x is a parent level folder, then resources are summarized for all its child folders.

Examples

Not run:
get_resources(x = x, odir = ~/tmp)

End(Not run)

10 job

get_wds Get all the (sub)directories in a folder

Description

Get all the (sub)directories in a folder

Usage

get_wds(x)

Arguments

x path to a folder

job Describing details of the job object

Description

Internal function (used by to_flow), which aids in creating a job object.

Usage

job(
cmds = "",
name = "myjob",
q_obj = new("queue"),
previous_job = "",
cpu = 1,
memory,
walltime,
submission_type = c("scatter", "serial"),
dependency_type = c("none", "gather", "serial", "burst"),
...

)

Arguments

cmds the commands to run

name name of the job

q_obj queue object

previous_job character vector of previous job. If this is the first job, one can leave this empty,
NA, NULL, ’.’, or ”. In future this could specify multiple previous jobs.

job 11

cpu no of cpu’s reserved

memory The amount of memory reserved. Units depend on the platform used to process
jobs

walltime The amount of time reserved for this job. Format is unique to a platform. Typi-
cally it looks like 12:00 (12 hours reserved, say in LSF), in Torque etc. we often
see measuring in seconds: 12:00:00

submission_type

submission type: A character with values: scatter, serial. Scatter means all the
’cmds’ would be run in parallel as separate jobs. Serial, they would combined
into a single job and run one-by-one.

dependency_type

dependency type. One of none, gather, serial, burst. If previous_job is specified,
then this would not be ’none’. [Required]

... other passed onto object creation. Example: memory, walltime, cpu

Examples

qobj <- queue(platform="torque")

torque job with 1 CPU running command 'sleep 2'
jobj <- job(q_obj=qobj, cmd = "sleep 2", cpu=1)

multiple commands
cmds = rep("sleep 5", 10)

run the 10 commands in parallel
jobj1 <- job(q_obj=qobj, cmd = cmds, submission_type = "scatter", name = "job1")

run the 10 commands sequentially, but WAIT for the previous job to complete
jobj2 <- job(q_obj=qobj, cmd = cmds, submission_type = "serial",

dependency_type = "gather", previous_job = "job1")

fobj <- flow(jobs = list(jobj1, jobj2))

plot the flow
plot_flow(fobj)
Not run:
dry run, only create the structure without submitting jobs
submit_flow(fobj)

execute the jobs: ONLY works on computing cluster, would fail otherwise
submit_flow(fobj, execute = TRUE)

End(Not run)

12 kill

kill Kill all jobs submitted to the computing platform, for one or multiple
flows

Description

NOTE:

This requires files which are created at the end of the submit_flow command.

Even if you want to kill the flow, its best to let submit_flow do its job, when done simply use
kill(flow_wd). If submit_flow is interrupted, files like flow_details.rds etc are not created, thus
flowr looses the association of jobs with flow instance and cannot monitor, kill or re-run the flow.

Usage

kill(x, ...)

S3 method for class 'character'
kill(x, force = FALSE, ...)

S3 method for class 'flow'
kill(
x,
kill_cmd,
verbose = opts_flow$get("verbose"),
jobid_col = "job_sub_id",
...

)

Arguments

x either path to flow wd or object of class flow

... not used

force You need to set force=TRUE, to kill multiple flows. This makes sure multiple
flows are NOT killed by accident.

kill_cmd The command used to kill. flowr tries to guess this commands, as defined in the
detect_kill_cmd(). Supplying it here; for custom platforms.

verbose A numeric value indicating the amount of messages to produce. Values are
integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

jobid_col Advanced use. The column name in ’flow_details.txt’ file used to fetch jobids
to kill

plot_flow 13

Examples

Not run:

example for terminal
flowr kill_flow x=path_to_flow_directory
In case path matches multiple folders, flowr asks before killing
kill(x='fastq_haplotyper*')
Flowr: streamlining workflows
found multiple wds:
/fastq_haplotyper-MS132-20150825-16-24-04-0Lv1PbpI
/fastq_haplotyper-MS132-20150825-17-47-52-5vFIkrMD
Really kill all of them ? kill again with force=TRUE

submitting again with force=TRUE will kill them:
kill(x='fastq_haplotyper*', force = TRUE)

End(Not run)

plot_flow Plot a clean and scalable flowchart describing the (work)flow

Description

Plot a flowchart using a flow object or flowdef

Usage

plot_flow(x, ...)

S3 method for class 'flow'
plot_flow(x, ...)

S3 method for class 'list'
plot_flow(x, ...)

S3 method for class 'character'
plot_flow(x, ...)

S3 method for class 'flowdef'
plot_flow(x, detailed = TRUE, type = c("1", "2"), pdf = FALSE, pdffile, ...)

S3 method for class 'flowdef'
plot(x, detailed = TRUE, type = c("1", "2"), pdf = FALSE, pdffile, ...)

S3 method for class 'flow'
plot(x, ...)

14 queue-class

Arguments

x Object of class flow, or a list of flow objects or a flowdef

... experimental and only for advanced use.

detailed include submission and dependency types in the plot [TRUE]

type 1 is original, and 2 is a ellipse with less details [1]

pdf create a pdf instead of plotting interactively [FALSE]

pdffile output file name for the pdf file. [flow_path/flow_details.pdf]

Examples

qobj = queue(type="lsf")
cmds = rep("sleep 5", 10)
jobj1 <- job(q_obj=qobj, cmd = cmds, submission_type = "scatter", name = "job1")
jobj2 <- job(q_obj=qobj, name = "job2", cmd = cmds, submission_type = "scatter",

dependency_type = "serial", previous_job = "job1")
fobj <- flow(jobs = list(jobj1, jobj2))
plot_flow(fobj)

Gather: many to one relationship
jobj1 <- job(q_obj=qobj, cmd = cmds, submission_type = "scatter", name = "job1")
jobj2 <- job(q_obj=qobj, name = "job2", cmd = cmds, submission_type = "scatter",

dependency_type = "gather", previous_job = "job1")
fobj <- flow(jobs = list(jobj1, jobj2))
plot_flow(fobj)

Burst: one to many relationship
jobj1 <- job(q_obj=qobj, cmd = cmds, submission_type = "serial", name = "job1")
jobj2 <- job(q_obj=qobj, name = "job2", cmd = cmds, submission_type = "scatter",

dependency_type = "burst", previous_job = "job1")
fobj <- flow(jobs = list(jobj1, jobj2))
plot_flow(fobj)

queue-class A queue object defines details regarding how a job is submitted

Description

Internal function (used by to_flow), to define the format used to submit a job.

Usage

queue(
object,
platform = c("local", "lsf", "torque", "sge", "moab", "test", "slurm"),
format = "",
queue = "long",

queue-class 15

walltime,
memory,
cpu = 1,
extra_opts = "",
submit_exe,
nodes = "1",
jobname = "name",
email = Sys.getenv("USER"),
dependency = list(),
server = "localhost",
verbose = FALSE,
cwd = "",
stderr = "",
stdout = "",
...

)

Arguments

object this is not used currently, ignore.

platform Required and important. Currently supported values are ’lsf’ and ’torque’. [Used
by class job]

format [advanced use] We have a default format for the final command line string gen-
erated for ’lsf’ and ’torque’.

queue the type of queue your group usually uses ’bsub’ etc.

walltime max walltime of a job.

memory The amount of memory reserved. Units depend on the platform used to process
jobs

cpu number of cpus you would like to reserve [Used by class job]

extra_opts [advanced use] Extra options to be supplied while create the job submission
string.

submit_exe [advanced use] Already defined by ’platform’. The exact command used to
submit jobs to the cluster example ’qsub’

nodes [advanced use] number of nodes you would like to request. Or in case of torque
name of the nodes.optional [Used by class job]

jobname [debug use] name of this job in the computing cluster

email [advanced use] Defaults to system user, you may put you own email though may
get tons of them.

dependency [debug use] a list of jobs to complete before starting this one

server [not used] This is not implemented currently. This would specify the head node
of the computing cluster. At this time submission needs to be done on the head
node of the cluster where flow is to be submitted

verbose [logical] TRUE/FALSE

cwd [debug use] Ignore

16 rerun

stderr [debug use] Ignore

stdout [debug use] Ignore

... other passed onto object creation. Example: memory, walltime, cpu

Details

Resources: Can be defined **once** using a queue object and recycled to all the jobs in a flow.
If resources (like memory, cpu, walltime, queue) are supplied at the job level they overwrite the
one supplied in queue Nodes: can be supplied to extend a job across multiple nodes. This is purely
experimental and not supported.

Server: This a hook which may be implemented in future.

Submission script The ’platform’ variable defines the format, and submit_exe; however these two
are available for someone to create a custom submission command.

Examples

qobj <- queue(platform='lsf')

rerun Re-run a pipeline in case of hardware or software failures.

Description

• hardware no change required, simple rerun: rerun(x=flow_wd)

• software either a change to flowmat or flowdef has been made: rerun(x=flow_wd, mat =
new_flowmat, def = new_flowdef)

NOTE:
flow_wd: flow working directory, same input as used for status

Usage

rerun(x, ...)

S3 method for class 'character'
rerun(x, ...)

S3 method for class 'flow'
rerun(
x,
mat,
def,
start_from,
samplename,
execute = TRUE,
kill = TRUE,

rerun 17

select,
ignore,
verbose = opts_flow$get("verbose"),
...

)

Arguments

x flow working directory
... passed onto to_flow
mat (optional) flowmat fetched from previous submission if missing. For more in-

formation regarding the format refer to to_flowmat
def (optional) flowdef fetched from previous submission if missing. For more infor-

mation regarding the format refer to to_flowdef
start_from (required) which job to start from, this is a job name.
samplename (optional) If flowmat contains multiple samples, provide the samplename, cor-

responding to the flow working directory provided.
execute [logical] whether to execute or not
kill (optional) logical indicating whether to kill the jobs from the previous execution

of flow.
select (optional) select a subset of jobs to rerun [character vector]
ignore (optional) ignore a subset of jobs to rerun [character vector]
verbose A numeric value indicating the amount of messages to produce. Values are

integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

Details

This function fetches details regarding the previous execution from the flow working directory
(flow_wd).
It reads the flow object from the flow_details.rds file, and extracts flowdef and flowmat from it using
to_flowmat and to_flowdef functions.
Using new flowmat OR flowdef for re-run:
Optionally, if either of flowmat or flowdef are supplied; supplied ones are used instead of those
extracted from previous submission.
This functions efficiently updates job details of the latest submission into the previous file; thus
information regarding previous job ids and their status is not lost.

Examples

Not run:

#
rerun(wd = wd, fobj = fobj, execute = TRUE, kill = TRUE)

End(Not run)

18 run

run Run automated Pipelines

Description

Run complete pipelines, by wrapping several steps into one convenient function.

NOTE: please use flowr version 0.9.8.9010 or higher.

In summary, this function performs the following steps:

• the argument x defines the name of the pipeline. Say, for example sleep_pipe.

• fetch_pipes: finds the pipeline definition (sleep_pipe.R, sleep_pipe.def and sleep_pipe.conf
files)

• sleep_pipe(...): Create all the required commands (flowmat)

• to_flow: Use flowmat and sleep_pipe.def to create a flow object.

• submit_flow: Submit the flow to the cluster.

Usage

run(
x,
platform,
def,
conf,
wd = opts_flow$get("flow_run_path"),
flow_run_path = wd,
rerun_wd,
start_from,
execute = FALSE,
...

)

run_pipe(
x,
platform,
def,
conf,
wd = opts_flow$get("flow_run_path"),
flow_run_path = wd,
rerun_wd,
start_from,
execute = FALSE,
...

)

run 19

Arguments

x name of the pipeline to run. This is a function called to create a flow_mat.

platform what platform to use, overrides flowdef

def flow definition

conf a tab-delimited configuration file with path to tools and default parameters. See
fetch_pipes.

wd an alias to flow_run_path

flow_run_path passed onto to_flow. Default it picked up from flowr.conf. Typically this is
~/flowr/runs

rerun_wd if you need to re-run, supply the previous working dir

start_from the step to start a rerun from. Intuitively, this is ignored in a fresh run and only
used in re-running a pipeline.

execute TRUE/FALSE

... passed onto the pipeline function as specified in x

Examples

Not run:

Run a short pipeline (dry run)
run("sleep_pipe")

Run a short pipeline on the local machine
run("sleep_pipe", platform = "local", execute = TRUE)

Run a short pipeline on the a torque cluster (qsub)
run("sleep_pipe", platform = "torque", execute = TRUE)

Run a short pipeline on the a MOAB cluster (msub)
run("sleep_pipe", platform = "moab", execute = TRUE)

Run a short pipeline on the a IBM (LSF) cluster (bsub)
run("sleep_pipe", platform = "lsf", execute = TRUE)

Run a short pipeline on the a MOAB cluster (msub)
run("sleep_pipe", platform = "moab", execute = TRUE)

change parameters of the pipeline
All extra parameters are passed on to the function function.
run("sleep_pipe", platform = "lsf", execute = TRUE, x = 5)

End(Not run)

20 run_pipe_v2

run_pipe_v2 Run automated Pipelines

Description

Run complete pipelines, by wrapping several steps into one convenient function.

NOTE: please use flowr version 0.9.8.9010 or higher.

In summary, this function performs the following steps:

• the argument x defines the name of the pipeline. Say, for example sleep_pipe.

• fetch_pipes: finds the pipeline definition (sleep_pipe.R, sleep_pipe.def and sleep_pipe.conf
files)

• sleep_pipe(...): Create all the required commands (flowmat)

• to_flow: Use flowmat and sleep_pipe.def to create a flow object.

• submit_flow: Submit the flow to the cluster.

Usage

run_pipe_v2(
pipe_func,
pipe_src,
flow_def,
flow_conf,
flowname,
platform,
flow_run_path = opts_flow$get("flow_run_path"),
rerun_wd,
start_from,
execute = FALSE,
...

)

Arguments

pipe_func name of the pipeline function in ‘pipe_src‘

pipe_src path to pipeline script

flow_def flow definition file

flow_conf flow conf file with various parameters used by the flow

flowname name for the flow for submission.

platform what platform to use, overrides flowdef

flow_run_path passed onto to_flow. Default it picked up from flowr.conf. Typically this is
~/flowr/runs

rerun_wd if you need to re-run, supply the previous working dir

setup 21

start_from the step to start a rerun from. Intuitively, this is ignored in a fresh run and only
used in re-running a pipeline.

execute TRUE/FALSE

... passed onto the pipeline function as specified in x

setup Setup and initialize flowr

Description

This functions creates a directory structure in user’s home directory. Additionally it creates a short-
cut to the flowr helper script in ~/bin.

Usage

setup(
bin = "~/bin",
flow_base_path = opts_flow$get("flow_base_path"),
flow_run_path = opts_flow$get("flow_run_path"),
flow_conf_path = opts_flow$get("flow_conf_path"),
flow_pipe_path = opts_flow$get("flow_pipe_paths")

)

Arguments

bin path to bin folder

flow_base_path The base of flowr configuration and execution folders.

flow_run_path base path to be used for execution of this flow. flowr would create a new time-
stamped folder in this base path and use it for logs, scripts etc. The default is
retrieved using opts_flow$get("flow_run_path").

flow_conf_path Flowr configuration folder, used by fetch_conf.

flow_pipe_path Folder with all pipelines, used by fetch_pipes.

Details

Will add more to this, to identify cluster and aid in other things.

22 status

status Monitor status of flow(s)

Description

Summarize status of a flow OR multiple flows OR a high-level summary of all flows in a folder.

Usage

status(
x,
use_cache = FALSE,
verbose = opts_flow$get("verbose"),
out_format = "markdown",
...

)

get_status(x, ...)

S3 method for class 'flow'
get_status(x, verbose, use_cache, out_format, ...)

S3 method for class 'character'
get_status(x, verbose, use_cache, out_format, ...)

S3 method for class 'data.frame'
get_status(x, verbose, use_cache, progress = TRUE, ...)

Arguments

x path to the flow root folder or a parent folder to summarize several flows.

use_cache This skips checking status of jobs which have already been completed a and
assumes no new jobs were submitted in the flow(s) being monitored. [FALSE]

verbose A numeric value indicating the amount of messages to produce. Values are
integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

out_format passed onto knitr:::kable. supports: markdown, rst, html... [markdown]

... not used

progress Whether or not to show a progress bar, when fetching/reading files [TRUE]

Details

basename(x) is used in a wild card search.

• Get status of all the flows: (all flows with ’sleep_pipe’ in their name are checked and their
status is shown)
 flowr status x=~/flowr/runs/sleep_pipe*

submit_flow 23

• Provide a high level summary of ALL flows in a folder:
 flowr status x=~/flowr/runs

Use use_cache=TRUE to speed up checking the status. This assumes that no new jobs have been
submitted and skips (re-)checking status of completed jobs.

Once all the jobs have been submitted to the cluster you may always use use_cache=TRUE.

Examples

Not run:
status(x = "~/flowr/runs/sleep_pipe*")
an example for running from terminal
flowr status x=path_to_flow_directory

End(Not run)

submit_flow Submit a flow to the cluster

Description

Submit a flow to the cluster or perform a dry-run to check and debug issues.

Usage

submit_flow(x, verbose = opts_flow$get("verbose"), ...)

S3 method for class 'list'
submit_flow(x, verbose = opts_flow$get("verbose"), ...)

S3 method for class 'flow'
submit_flow(
x,
verbose = opts_flow$get("verbose"),
execute = FALSE,
uuid,
plot = TRUE,
dump = TRUE,
.start_jid = 1,
...

)

Arguments

x a object of class flow.

verbose logical.

... Advanced use. Any additional parameters are passed on to submit_job function.

execute logical whether or not to submit the jobs

24 submit_job

uuid character Advanced use. This is the final path used for flow execution. Espe-
cially useful in case of re-running a flow.

plot logical whether to make a pdf flow plot (saves it in the flow working directory).

dump dump all the flow details to the flow path

.start_jid Job to start this submission from. Advanced use, should be 1 by default.

Details

NOTE: Even if you want to kill the flow, its best to let submit_flow do its job, when done simply
use kill(flow_wd). If submit_flow is interrupted, files like flow_details.rds etc are not created,
thus flowr looses the association of jobs with flow instance and cannot monitor, kill or re-run the
flow.

Examples

Not run:
submit_flow(fobj = fobj, ... = ...)
End(Not run)

submit_job Submit a step of a flow

Description

Internal function (used by submit_flow), which submit a single step of a flow.

Usage

submit_job(jobj, fobj, job_id, execute = FALSE, verbose = FALSE, ...)

Arguments

jobj Object of calls job

fobj Object of calls flow

job_id job id

execute A logical vector suggesting whether to submit this job

verbose logical

... not used

Examples

Not run:
submit_job(jobj = jobj, fobj = fobj, execute = FALSE,
verbose = TRUE, wd = wd, job_id = job_id)

End(Not run)

submit_run 25

submit_run Submit several flow objects, limit the max running concurrently

Description

Submit several flow objects, limit the max running concurrently

Usage

submit_run(x, wd, max_processing = 7)

Arguments

x a list of flow objects

wd a folder to monitor (flow_run_path)

max_processing max number of flow which may be processed concurrently

test_queue test_queue

Description

This function attempts to test the submission of a job to the queue. We would first submit one
single job, then submit another with a dependency to see if configuration works. This would create
a folder in home called ’flows’.

[Depreciated]: This function has been superseded by run("sleep_pipe", platform = "lsf",
execute=TRUE)

Usage

test_queue(q_obj, verbose = TRUE, ...)

Arguments

q_obj queue object

verbose toggle

... These params are passed onto queue. ?queue, for more information

Examples

Not run:
test_queue(q_obj = q_obj, ... = ...)
End(Not run)

26 to_flow

to_df.status to_df.status

Description

convert the status to a df. To be called from R

Usage

to_df.status(x)

Arguments

x folder with multiple runs

Value

a data.frame with status per dir.

to_flow Create flow objects

Description

Use a set of shell commands (flow mat) and flow definition to create flow object.

Usage

to_flow(x, ...)

is.flow(x)

S3 method for class 'character'
to_flow(x, def, grp_col, jobname_col, cmd_col, ...)

S3 method for class 'flowmat'
to_flow(
x,
def,
flowname,
grp_col,
jobname_col,
cmd_col,
submit = FALSE,
execute = FALSE,
containerize = TRUE,

to_flow 27

platform,
flow_run_path,
qobj,
verbose = opts_flow$get("verbose"),
...

)

S3 method for class 'data.frame'
to_flow(x, ...)

S3 method for class 'list'
to_flow(
x,
def,
flowname,
flow_run_path,
desc,
qobj,
module_cmds = opts_flow$get("module_cmds"),
verbose = opts_flow$get("verbose"),
...

)

Arguments

x this can either to a filename, a data.frame or a list. In case it is a file name, it
should be a tsv file representing a flow_mat. See to_flowmat for details

... Supplied to specific functions like to_flow.data.frame

def a flow definition. Basically a table with resource requirements and mapping of
the jobs in this flow. See to_flowdef for details on the format.

grp_col name of the grouping column in the supplied flow_mat. See to_flow for details.
Default value is [samplename].

jobname_col name of the job name column in flow_mat. Default value is [jobname].

cmd_col name of the command column name in flow_mat. Default value is [cmd].

flowname name of the flow, this is used as part of the execution foldername. A good
simple identifier, which does not support any special characters. Names may
use characters (a-z) and numbers (0-9), using underscore (_) as a word separator.
Default value is [flowname].

submit after creating a flow object, should flowr also use submit_flow to perform a dry-
run OR real submission. See below for details. Default value is [FALSE]

execute when calling submit_flow, should flowr execute the flow or perform a dry-run.
See below for details. Default value is [FALSE].

containerize if the flowmat has multiple samples, flowr creates a creates a new date-stamped
folder, and includes all flows in this batch inside it. This is keeps the logs clean,
and containerizes each batch. To disable this behavior set this to FALSE, default
is [TRUE].

28 to_flow

platform a specifying the platform to use, possible values are local, lsf, torque, moab, sge
and slurm This over-rides the platform column in the flowdef. (optional)

flow_run_path base path to be used for execution of this flow. flowr would create a new time-
stamped folder in this base path and use it for logs, scripts etc. The default is
retrieved using opts_flow$get("flow_run_path").

qobj Depreciated, modify cluster templates as explained on flow-r.github.io/flowr.
An object of class queue.

verbose A numeric value indicating the amount of messages to produce. Values are
integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

desc Advanced Use. final flow name.

module_cmds A character vector of additional commands, which will be prepended to each
script of the flow. Default is retrieved using opts_flow$get("module_cmds").

Details

The parameter x can be a path to a flow_mat, or a data.frame (as read by read_sheet). This is a
minimum three column table with columns: samplename, jobname and cmd. See to_flowmat for
details.

Value

Returns a flow object. If execute=TRUE, fobj is rich with information about where and how the flow
was executed. It would include details like jobids, path to exact scripts run etc. To use kill_flow, to
kill all the jobs one would need a rich flow object, with job ids present.

Behaviour: What goes in, and what to expect in return?

• submit=FALSE & execute=FALSE: Create and return a flow object

• submit=TRUE & execute=FALSE: dry-run, Create a flow object then, create a structured ex-
ecution folder with all the commands

• submit=TRUE, execute=TRUE: Do all of the above and then, submit to cluster

See Also

to_flowmat, to_flowdef, to_flowdet, flowopts and submit_flow

Examples

Use this link for a few elaborate examples:
http://flow-r.github.io/flowr/flowr/tutorial.html#define_modules

ex = file.path(system.file(package = "flowr"), "pipelines")
flowmat = as.flowmat(file.path(ex, "sleep_pipe.tsv"))
flowdef = as.flowdef(file.path(ex, "sleep_pipe.def"))
fobj = to_flow(x = flowmat, def = flowdef, flowname = "sleep_pipe", platform = "lsf")

create a vector of shell commands

http://flow-r.github.io/flowr/install.html#hpcc_support_overview

to_flowdef 29

cmds = c("sleep 1", "sleep 2")
create a named list
lst = list("sleep" = cmds)
create a flowmat
flowmat = to_flowmat(lst, samplename = "samp")

Use flowmat to create a skeleton flowdef
flowdef = to_flowdef(flowmat)

use both (flowmat and flowdef) to create a flow
fobj = to_flow(flowmat, flowdef)

submit the flow to the cluster (execute=TRUE) or do a dry-run (execute=FALSE)
Not run:
fobj2 = submit_flow(fobj, execute=FALSE)
fobj3 = submit_flow(fobj, execute=TRUE)

Get the status or kill all the jobs
status(fobj3)
kill(fobj3)

End(Not run)

to_flowdef Flow Definition defines how to stitch steps into a (work)flow.

Description

This function enables creation of a skeleton flow definition with several default values, using a
flowmat. To customize the flowdef, one may supply parameters such as sub_type and dep_type
upfront. As such, these params must be of the same length as number of unique jobs using in the
flowmat.

Each row in this table refers to one step of the pipeline. It describes the resources used by the step
and also its relationship with other steps, especially, the step immediately prior to it.

Submission types: This refers to the sub_type column in flow definition.

Consider an example with three steps A, B and C. A has 10 commands from A1 to A10, similarly
B has 10 commands B1 through B10 and C has a single command, C1. Consider another step D
(with D1-D3), which comes after C.

step (number of sub-processes) A (10) —-> B (10) —–> C (1) —–> D (3)

• scatter: submit all commands as parallel, independent jobs.
Submit A1 through A10 as independent jobs

• serial: run these commands sequentially one after the other.
- Wrap A1 through A10, into a single job.

30 to_flowdef

Dependency types

This refers to the dep_type column in flow definition.

• none: independent job.

– Initial step A has no dependency

• serial: one to one relationship with previous job.

– B1 can start as soon as A1 completes, and B2 starts just after A2 and so on.

• gather: many to one, wait for all commands in the previous job to finish then start the current
step.

– All jobs of B (1-10), need to complete before C1 starts

• burst: one to many wait for the previous step which has one job and start processing all cmds
in the current step.

- D1 to D3 are started as soon as C1 finishes.

Usage

to_flowdef(x, ...)

S3 method for class 'flowmat'
to_flowdef(
x,
sub_type,
dep_type,
prev_jobs,
queue = "short",
platform = "torque",
memory_reserved = "2000",
cpu_reserved = "1",
nodes = "1",
walltime = "1:00",
guess = FALSE,
verbose = opts_flow$get("verbose"),
...

)

S3 method for class 'flow'
to_flowdef(x, ...)

S3 method for class 'character'
to_flowdef(x, ...)

as.flowdef(x, ...)

is.flowdef(x)

to_flowdef 31

Arguments

x can a path to a flowmat, flowmat or flow object.
... not used
sub_type submission type, one of: scatter, serial. Character, of length one or same as the

number of jobnames
dep_type dependency type, one of: gather, serial or burst. Character, of length one or

same as the number of jobnames
prev_jobs previous job name
queue Cluster queue to be used
platform platform of the cluster: lsf, sge, moab, torque, slurm etc.
memory_reserved

amount of memory required.
cpu_reserved number of cpu’s required. [1]
nodes if you tool can use multiple nodes, you may reserve multiple nodes for it. [1]
walltime amount of walltime required
guess should the function, guess submission and dependency types. See details.
verbose A numeric value indicating the amount of messages to produce. Values are

integers varying from 0, 1, 2, 3, Please refer to the verbose page for more
details. opts_flow$get("verbose")

Format

This is a tab separated file, with a minimum of 4 columns:

required columns:

• jobname: Name of the step
• sub_type: Short for submission type, refers to, how should multiple commands of this step

be submitted. Possible values are ‘serial‘ or ‘scatter‘.
• prev_jobs: Short for previous job, this would be the jobname of the previous job. This can

be NA/./none if this is a independent/initial step, and no previous step is required for this to
start. Additionally, one may use comma(s) to define multiple previous jobs (A,B).

• dep_type: Short for dependency type, refers to the relationship of this job with the one defined
in ‘prev_jobs‘. This can take values ‘none‘, ‘gather‘, ‘serial‘ or ‘burst‘.

resource columns (recommended):

Additionally, one may customize resource requirements used by each step. The format used varies
and depends to the computing platform. Thus its best to refer to your institutions guide to specify
these.

• cpu_reserved integer, specifying number of cores to reserve [1]
• memory_reserved Usually in KB [2000]
• nodes number of server nodes to reserve, most tools can only use multiple cores on a single

node [1]
• walltime maximum time allowed for a step, usually in a HH:MM or HH:MM:SS format.

[1:00]
• queue the queue to use for job submission [short]

32 to_flowdet

Details

NOTE: Guessing is an experimental feature, please check the definition carefully. it is provided to
help but not replace your best judgement.

Optionally, one may provide the previous jobs and flowr can try guessing the appropriate submission
and dependency types. If there are multiple commands, default is submitting them as scatter, else
as serial. Further, if previous job has multiple commands and current job has single; its assumed
that all of the previous need to complete, suggesting a gather type dependency.

Examples

see ?to_flow for more examples

read in a tsv; check and confirm format
ex = file.path(system.file(package = "flowr"), "pipelines")

read in a flowdef from file
flowdef = as.flowdef(file.path(ex, "sleep_pipe.def"))

check if this a flowdef
is.flowdef(flowdef)

use a flowmat, to create a sample flowdef
flowmat = as.flowmat(file.path(ex, "sleep_pipe.tsv"))
to_flowdef(flowmat)

change the platform
to_flowdef(flowmat, platform = "lsf")

change the queue name
def = to_flowdef(flowmat,
platform = "lsf",
queue = "long")

plot_flow(def)

guess submission and dependency types
def2 = to_flowdef(flowmat,
platform = "lsf",
queue = "long",
guess = TRUE)

plot_flow(def2)

to_flowdet Create a flow’s submission detail file

Description

Create a file describing details regarding jobs ids, submission scripts etc.

to_flowmat 33

Usage

to_flowdet(x, ...)

S3 method for class 'rootdir'
to_flowdet(x, ...)

S3 method for class 'character'
to_flowdet(x, ...)

S3 method for class 'flow'
to_flowdet(x, ...)

Arguments

x this is a wd

... not used

Details

The path provided should contain a flow_details.rds file (which is used to extract all the informa-
tion).

Incase a parent folder with multiple flows is provided information regarding jobids is omitted.

if x is char. assumed a path, check if flow object exists in it and read it. If there is no flow object,
try using a simpler function

to_flowmat Create a flowmat using a list a commands.

Description

Create a flowmat (data.frame) using a named list a commands.

as.flowmat(): reads a file and checks for required columns. If x is data.frame checks for required
columns.

Usage

to_flowmat(x, ...)

S3 method for class 'list'
to_flowmat(x, samplename, ...)

S3 method for class 'data.frame'
to_flowmat(x, ...)

S3 method for class 'flow'

34 to_flowmat

to_flowmat(x, ...)

as.flowmat(x, grp_col, jobname_col, cmd_col, ...)

is.flowmat(x)

Arguments

x a named list, where name corresponds to the jobname and value is a vector of
commands to run.

... not used

samplename character of length 1 or that of nrow(x) [’samplename’]

grp_col column used for grouping, default samplename.

jobname_col column specifying jobname, default jobname

cmd_col column specifying commands to run, default cmd

Examples

Use this link for a few examples:
http://flow-r.github.io/flowr/tutorial.html#define_modules

create a flow mat, starting with a list of commands.
cmd_sleep = c("sleep 1", "sleep 2")
cmd_echo = c("echo 'hello'", "echo 'hello'")

create a named list
lst = list("sleep" = cmd_sleep, "echo" = cmd_echo)
flowmat = to_flowmat(lst, samplename = "samp")

read in a tsv; check and confirm format
ex = file.path(system.file(package = "flowr"), "pipelines")

flowmat = as.flowmat(file.path(ex, "sleep_pipe.tsv"))

if your column names are different than defaults, explicitly specify them.
flowmat = as.flowmat(file.path(ex, "sleep_pipe.tsv"), jobname_col = "jobname")

check if a object is a flowmat
is.flowmat(flowmat)

create a flowdef, from this flowmat
flowdef = to_flowdef(flowmat)

create a flow object using flowmat and flowdef
fobj = to_flow(flowmat, flowdef)

verbose 35

extract a flowmat from a flow (here the samplename also contains the name of the flow)
flowmat2 = to_flowmat(fobj)

submit the flow to the cluster (execute=TRUE) or do a dry-run (execute=FALSE)
Not run:
fobj2 = submit_flow(fobj, execute=FALSE)
fobj3 = submit_flow(fobj, execute=TRUE)

Get the status or kill all the jobs
status(fobj3)
kill(fobj3)

End(Not run)

verbose Verbose levels, defining verboseness of messages

Description

There are several levels of verboseness one can choose from.

levels:

• level 0 is almost silent, producing only necessary messages

• level 1 is good for most purposes, where as,

• level 2 is good when developing a new pipeline.

• level 3 is good for debugging, especially when getting un-expected results.

One can set the level of verboseness using opts_flow$set(verbose=2), which will be used across
flowr and ngsflows packages. Additionally one may set this value in the configurations files:
~/flowr/conf/flowr.conf OR ~/flowr/conf/ngsflows.conf.

Usage

verbose

Format

An object of class NULL of length 0.

36 whisker_render

Examples

fl = system.file("pipelines/abcd.def", package = "flowr")
def = as.flowdef(fl, verbose = 0)
def seems to be a file, reading it...
def = as.flowdef(fl, verbose = 1)
def seems to be a file, reading it...
checking if required columns are present...
checking if resources columns are present...
checking if dependency column has valid names...
checking if submission column has valid names...
checking for missing rows in def...
checking for extra rows in def...
checking submission and dependency types...
def = as.flowdef(fl, verbose = 2)
def seems to be a file, reading it...
checking if required columns are present...
checking if resources columns are present...
checking if dependency column has valid names...
checking if submission column has valid names...
checking for missing rows in def...
checking for extra rows in def...
checking submission and dependency types...
jobname prev.sub_type --> dep_type --> sub_type: relationship
1: A none --> none --> scatter
2: B scatter --> serial --> scatter rel: complex one:one
3: C scatter --> gather --> serial rel: many:one
4: D serial --> burst --> scatter rel: one:many

whisker_render Wrapper around whisker.render with some additional checks

Description

Internal function (used by submit_job), which creates a submission script using platform specific
templates.

This is a wrapper around whisker.render

Usage

whisker_render(template, data)

Arguments

template template used

data a list with variables to be used to fill in the template.

write_flow_details 37

write_flow_details Write files describing this flow

Description

Write files describing this flow

Usage

write_flow_details(x, fobj, summ, flow_det, flow_mat, flow_def, plot = FALSE)

Arguments

x path to write to

fobj flow object

summ a status summary.

flow_det a flow details data.frame

flow_mat flow matrix (of commands)

flow_def flow definiion

plot logical, plot or not

Index

∗ datasets
flowopts, 7
verbose, 35

∗ queue
queue-class, 14

as.flowdef (to_flowdef), 29
as.flowmat (to_flowmat), 33

check, 2
check_args, 3

definition (to_flowdef), 29

fetch, 4, 8
fetch_conf, 5, 21
fetch_conf (fetch), 4
fetch_pipes, 5, 18–21
fetch_pipes (fetch), 4
flow, 12, 17, 24, 26
flow (flow-class), 6
flow-class, 6
flowdef (to_flowdef), 29
flowopts, 5, 7, 28
flowr (to_flow), 26

get_opts, 7
get_opts (flowopts), 7
get_resources, 9
get_resources_lsf, 9
get_status (status), 22
get_wds, 10

is.flow (to_flow), 26
is.flowdef (to_flowdef), 29
is.flowmat (to_flowmat), 33

job, 10, 24

kill, 12

load_opts, 7

load_opts (flowopts), 7

opts_flow (flowopts), 7
opts_flow$get (flowopts), 7
opts_flow$load, 5
opts_flow$load (flowopts), 7
opts_flow$set (flowopts), 7

params, 8
plot (plot_flow), 13
plot_flow, 13

queue, 16, 28
queue (queue-class), 14
queue-class, 14

read_sheet, 8
rerun, 16
run, 18
run_flow (run), 18
run_pipe (run), 18
run_pipe_v2, 20

set_opts, 7
set_opts (flowopts), 7
setup, 21
status, 16, 22
submit_flow, 6, 12, 18, 20, 23, 27, 28
submit_job, 23, 24
submit_run, 25

test_queue, 25
to_df.status, 26
to_flow, 6, 14, 18, 20, 26, 27
to_flow.data.frame, 27
to_flowdef, 17, 27, 28, 29
to_flowdet, 28, 32
to_flowmat, 17, 27, 28, 33

verbose, 3, 5, 12, 17, 22, 28, 31, 35

38

INDEX 39

whisker.render, 36
whisker_render, 36
write_flow_details, 37

	check
	check_args
	fetch
	flow-class
	flowopts
	get_resources
	get_wds
	job
	kill
	plot_flow
	queue-class
	rerun
	run
	run_pipe_v2
	setup
	status
	submit_flow
	submit_job
	submit_run
	test_queue
	to_df.status
	to_flow
	to_flowdef
	to_flowdet
	to_flowmat
	verbose
	whisker_render
	write_flow_details
	Index

